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An arbitrarily-shaped, closed container completely filled with fluid is considered. 
It is assumed that the fluid is originally in a stably-stratified state of rest, and 
that a t  an initial instant the temperature of the container walls is impulsively 
changed. The ensuing unsteady laminar motion is found by solving the 
linearized Boussinesq equations governing buoyancy-driven flows. A ‘boundary- 
layerlinviscid-interior ’ decomposition leads to a, modified asymptotic expansion 
scheme of analysis. The boundary-layer concept is valid only for large values of 
the Rayleigh number, and, in addition, we limit the Prandtl number to order 
unity. It is found that the inviscid interior region heats up by means of a convec- 
tion process that is driven by suction induced by the boundary layer. The inviscid, 
adiabat,ic interior responds to a special horizontal ‘average’ value of t,he con- 
tainer temperature perturbation. The boundary layer smears out, or averages, 
any circumferential variation in this perturbation, so that the interior, in effect, 
responds to an isothermal boundary in each horizontal plane. The interior 
temperature and vertical velocity component are expressed simply in terms of 
this horizontal ‘average ’ container temperature. The horizontal velocity poten- 
tial is governed by a Poisson equation, whose solution is developed for several 
specific geometries to illustrate the nature of the flow. 

1. Introduction 
There are many engineering and scientific problems in which unsteady 

buoyancy-driven flows apparently play a central role. These problems can 
generally be classified as either ‘external’ problems, such as the flow around 
a heated rod or plate in an otherwise quiescent fluid, or ‘internal’ problems, such 
as the flow between parallel plates or in fluid-filled cavities. 

As pointed out by Ostrach (1972), the external problems have received a great 
deal of attention, while relatively little has been done about internal problems 
thus far. Ostrach contends that the reason for this is not the greater importance 
of the external problem, but rather that internal natural-convection problems 
are considerably more complex. This is because those external natural-convection 
problems for which the Rayleigh number is large can be analysed by the usual 
Prandtl boundary-layer theory that is so helpful in other external fluid-flow 
problems. This is due to the assumption that the region exterior to the boundary 
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layer can be assumed to be unaffected by the boundary layer in an external 
problem. For confined natural-convection problems, on the other hand, a 
boundary layer will exist near the walls (for sufficiently large Rayleigh number), 
but the region exterior to the boundary layer cannot be assumed to be indepen- 
dent of the boundary layer. I n  other words, the region exterior to the boundary 
layer will be completely enclosed by the boundary layer, and will form a core 
region that is greatly affected by boundary-layer behaviour. Hence, the boundary 
layer and core are closely coupled to each other; and this coupling constitutes the 
main source of difficulty in obtaining analytic solutions to internal problems. 

There have been many efforts to analyse various models of the contained 
buoyancy-driven flow problem. Many of these efforts have used numerical finite- 
difference methods, and have been restricted to rectangular or cylindrical geo- 
metries. Few have focused on the important problem of transient flows. We shall 
restrict our attention to the practically important flow regime that corresponds 
to large values of the Rayleigh number (the ratio of buoyant forces to viscous 
forces); and we shall exclude the class of problems that deals with the stability of 
buoyancy-driven flows typified by the Rayleigh instability for heating from 
below. The Prandtl number is assumed to be of order unity; andwe shall consider 
laminar flow exclusively. 

Sakurai & Matsuda (1972), motivated by the work of Greenspan & Howard 
(1963), have considered a Boussinesq fluid a t  rest in a circular cylinder with its 
axis of symmetry parallel to the gravitational force. They analyse the unsteady 
flow that results from abruptly changing the side-wall temperature from its 
original profile, which is invariant around the cylinder (in a horizontal plane) and 
linear along the cylinder (in a vertical plane), to some new profile that is also linear 
along the cylinder. This new profile has a slightly greater rate of change than the 
original profile, and is oriented such that the container is heated above its hori- 
zontal mid-plane and cooled below its mid-plane. They apply a linearized theory 
for the case where the Prandtl number is of order unity, to find the temperature 
and velocity within the core region. They demonstrate the existence of a meridi- 
onal circulation, which is pumped by a side-wall boundary layer. This meridional 
circulation redistributes the fluid, to bring about a new state of stratification. 
The time scale for this temperature adjustment process is shown to be given by 
the product of the one-fourth power of the Rayleigh number and the inverse of 
the Brunt-Vaisala frequency. This work by Sakurai & Matsuda is important, in 
that for the first time an analytical solution has been developed for the transient 
natural-convection flow of a fluid in a cavity that makes clear the basic physical 
processes that occur. The limitation to their work is that it is applied only to the 
circular cylinder geometry and a particular linear boundary condition. Thus, the 
general problem of linearized buoyant motion in a closed container remains to 
be solved. 

Here we shall consider an arbitrarily-shaped closed container enclosing a 
Boussinesq fluid, which is initially in a stably-stratified state of rest. At an initial 
instant, the temperature of the container will be impulsively changed. We shall 
describe the ensuing unsteady laminar flow, as well as the final asymptotic steady 
state that is governed by the linearized equations. We refer to this problem as the 



Linearized buoyunt motion in u closed container 731 

general problem of heat-up from rest, since no restriction has been made as to the 
container temperature profile and, as we shall see, the container geometry is 
rather arbitrary. The solution to this general heat-up problem encompasses many 
linearized contained buoyant motions as special cases and, as such, should be of 
importance. 

Those who study stratified fluids are aware that a very close analogy exists 
between stratified fluid phenomena and rotating fluid phenomena. For example, 
Veronis (1970) gives an extensive review of the analogy of between rotating and 
stratified fluids, and Greenspan (1969) often mentions the analogy in his discus- 
sion of rotating fluid theory. Barcilon & Pedlosky (1967) and Siegmann (1971), 
among others, have considered the effects of stratification in the linear theory of 
rotating fluids. The Coriolis force, however, plays a dominant role in these 
analyses, which are restricted to specific geometries. In  contrast, it  is our purpose 
here to focus attention on the behaviour of stratified fluids in arbitrarily-shaped 
containers and completely to  ignore rotating fluid effects. 

The rotating fluid problem that is similar to our heat-up problem for stratified 
fluids is the spin-down problem treated by Greenspan (1965). He considers an 
arbitrarily-shaped closed container filled with an incompressible fluid, which, a t  
an initial instant, is in a physically acceptable initial state of fluid motion slightly 
different from a state of rigid rotation a t  the angular velocity of the container. 
Greenspan then analyses the ensuing transient motion, and describes the 
approach to the ultimate state of rigid-body rotation. We shall adapt the solution 
procedure used by Greenspan to solve our heat-up problem for a stratified fluid. 

Briefly, the solution procedure is as follows. Expansion in half powers of the 
Ekman number (the fourth root of the reciprocal of the Rayleigh number is the 
appropriate parameter for stratified fluids) is introduced into the governing 
equations, and a problem sequence is resolved. The first of these problems is the 
zeroth-order solution for the inviscid interior region. In  the second problem, the 
interior motion is corrected for viscous effects, to make the velocity zero at  the 
boundary. However, the boundary layers cause further interior motion by 
inducing a small normal mass flux; and this sets up a third problem. Once the 
secondary interior motion is determined from this third problem, it too must be 
corrected a t  the boundary. The analysis ends with this secondary circulation, 
although in principle the procedure could be carried on to higher order. The goal 
of our work, then, is to adapt this solution procedure to the general heat-up 
problem for a stratified fluid, and to achieve an approximate solution for the 
motion that is uniformly valid in time and space. 

2. Theoretical development 

2.1. Governing equations 

Consider an arbitrarily-shaped closed container Z which is completely filled with 
a ‘Boussinesq’ fluid, initially in a stable state of rest. At an initial instant t = 0, 
the temperature of Z is impulsively changed. A description of the unsteady flow 
that ensues is desired. 
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Assume that the fluid motion to be studied is a small perturbation on this basic 
state of stable static equilibrium. The following linear equations then apply 
(Doty 1973): 

v.v = 0, (1) 

_ -  - - V p  + Ra-IV2V i- T&, 
av 
at 

(3) Pr - + W = Ra-WT.  

Pr and Ra are the Prandtl number and Rayleigh number, respectively. W is the 
vertical component of the total fluid velocity V. Gravity g is assumed to be 
constant and act in the negative x direction. 

Here the normalized pressure p and temperature T of the fluid are related to 
the physical pressure and temperature (dimensional quantities are denoted by 
an asterisk) according to 

aT 
at 

The subscript r refers to the initial, stable state of rest. The normalized fluid 
velocity V ,  and time t are given by 

t = t*N Prg. 
V" Pr4 V=-  
eL*N ' 

In  these normalizations, L" is a typical container dimension in the vertical 
direction, and AT* is the temperature stratification of the basic state across L*. 
The order of the perturbation in the boundary temperature is €AT*, where 
E 4 1. Reference values of the basic state (say, a t  z = 0 )  are over-scored, and 
/3 represents the coefficient of thermal expansion of the fluid. The nonlinear terms 
t'hat would appear in (2) and (3) can be shown to be of the order of e or less every- 
where in the container, and thus are neglected. 

The non-dimensional parameters that appear in these equations are the 
Prandtl number, Rayleigh number and Brunt-Vaisala frequency: 

Pr E j2=c,*/i*, Ra E p*2g*L*3P*AT*c;l&*F*, N ($*AT* g*lL*)&. 

,u*, C z  and k* are the coefficients of viscosity, specific heat a t  constant pressure 
and thermal conductivity, respectively. These three parameters are assumed to 
be constant. 

To complete the formulation of the problem, we add the following initial and 
boundary conditions : static equilibrium initially, 

V ( r ,  0) = 0 (t = 0) ,  (8) 

given boundary temperature, 

T(r , , t )  = H(t )  T z ( r z )  on C, 

V(r , , t )  = 0 on X, 
no-slip on container, 
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bounded solution, V, T finite ( t - tco) .  

Here H ( t )  is the Heaviside step function, TZ(rx) is the temperature profile on 
the boundary and rT. is the position vector to some point on the container. 

2.2. Solution procedure 

We shall now make several assumptions based primarily on work of Doty & 
Jischke (1 974), which gives an exact solution to the problem of linearized natural 
convection flow due to an impulsively heated infinite vertical plate. We shall 
assume that the Rayleigh number is large, and that viscous action and heat con- 
duction are confined to thin boundary layers a t  the container walls throughout 
the principal phase of the motion. These boundary layers entrain fluid, and pro- 
duce a secondary motion in the inviscid, adiabatic interior that is of major 
importance in redistributing the internal energy in the interior to the new state 
of stratification. Buoyancy, in this fashion, adjusts the temperature to its steady- 
state value in the ‘heat-up’ time scale Ra&, and Ra-& emerges as the significant 
expansion parameter. 

An approximate solution is sought which consists of an inviscid, adiabatic 
motion throughout the interior of the container that is matched to a motion in 
the viscous, heat-conducting boundary layer, in order to satisfy the boundary 
conditions. Furthermore, the representation must be uniformly valid in time and 
space, to ensure that all the important phenomena are included and described. 
The solution procedure is to expand the flow variables in powers of R a t ,  intro- 
duce these expansions into the governing equations, and resolve a problem 
sequence. The first of these problems is for the zeroth-order inviscid, adiabatic 
interior motion. In  the second problem, the interior motion is corrected for 
viscous and conduction effects, to make the velocity zero a t  the boundary and to 
satisfy the boundary condition on the temperature. These boundary layers induce 
further interior motion by establishing a small mass flux normal to the boundary, 
which requires a third problem to correct the interior motion. The analysis ends 
with this first-order correction to the interior motion, although in principle, 
higher-order corrections could be carried out. 

It is anticipated that the pressure force and the buoyant force will be in balance 
over many periods of the Brunt-Vaisala frequency within the inviscid, adiabatic 
interior and that the interior will change slowly, without oscillation, from its 
initial value to its final value on the heat-up time scale. Thus, the assumed form 
of the interior solution is given by 

V = V(r, T ) ,  p = p(r ,  7), T = T(r, T ) ,  (12)-( 1 4) 

where T = Raat. (15) 
This inviscid, adiabatic solution must be corrected for viscous action near the 

boundary, which in turn induces further motion in the interior, etc. The boundary 
layers produced by the temperature perturbation become fully developed in a 
relatively short time (a few periods of the Brunt-Vaisala frequency), then change 
very slowly during heat-up. Thus, as far as the inviscid motion is concerned, the 
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boundary layers can be considered to be formed instantaneously, and to remain 
quasi-steady throughout the heat-up process. As a consequence, however, the 
initial condition on the velocity must be given up. The interior fluid will not be 
a t  rest initially, within the framework of this analysis, but will have some initial 
first-order motion that is dictated by the boundary-layer ‘suction’. We thus lose 
the capability of exactly describing the boundary layers and associated secondary 
flow for the very earliest times, but only then. Furthermore, for the case of an 
impulsively-heated vertical plate (Doty & Jischke 1974), these quasi-steady 
boundary layers and secondary flows are substantially the same as those deter- 
mined from an exact solution of the linearized equations. 

Thus an approximate solution of the following form is sought: 

v = Vo(r, 7 )  + To + Ra-*[V,(r, 7 )  +ell + . . ., 
p = Po@, 7 )  + @o + Ra-b l ( r ,  7 )  + pll + . . . , 
T = T o ( r , ~ ) + ~ o + R a - ~ [ T l ( r , ~ ) + ~ J +  ... . 

(16) 

(17 )  

(18) 

Tilde denotes a boundary-layer function of a stretched boundary-layer 
co-ordinate ( (scaled by Ra-i). These functions represent corrections to the 
inviscid solution in the boundary layer and approach zero exponentially fast as 
(-+a, corresponding to the outer edge of the boundary layer. The functions 
without tildes are then the solution of the inviscid, adiabatic equations of motion. 
The replacement of the dependent variables by such a decomposition leads to 
a modified system of equations within a singular-perturbation scheme of analysis. 

Those familiar with the linearized theory of rotating fluids will recognize that 
our solution of the heat-up problem does not include inertial modes corresponding 
to oscillations on a time scale of order unity (corresponding to a dimensional time 
of the order of the inverse of the Brunt-Vaisala frequency). The expansions 
(16)-(18) are analogous to the geostrophic mode of linearized rotating fluid 
theory. We might, by analogy, refer to (16)-( 18) as corresponding to the ‘ thermo- 
strophic ’ mode of linearized buoyancy-driven fluid motion. The linear theory of 
rotating fluids represents the solution of the general spin-up problem as a super- 
position of a geostxophic mode and a presumably infinite number of inertial 
modes. Thus we should expect the solution of the linearized Boussinesq equations 
for the general heat-up problem to be similarly described as a superposition of 
thermostrophic and inertial modes. In the present case, however, the assumption 
of an initial state of rest means that only the thermostrophic mode is excited, and 
the inclusion of inertial modes is unnecessary. The more general case of an initial 
state of motion is being pursued. 

The approximate form of the equations valid in the boundary layers can be 
obtained in the following manner. Let fi be defined as the outward-pointing unit 
normal to the container X. The fluid velocity in the boundary layer can then be 
resolved into components that are normal and tangential to C. This is expressed as 

B = ( Q . f i ) A - ( 8 x f i ) x f i .  (19) 

This expression can be substituted into the conservation equations; and, neg- 
lecting the tangential derivatives along X of any flow variable compared with its 
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normal derivative, we obtain the following set of equations, which are valid in 
the boundary layer: 

a 
- (B . fi) + Ra-4 fi . V x (B x fi) = 0, at (20) 

Here V, is defined as the two-dimensional gradient operator with components in 
the plane of C. The formal development of these equations can proceed in several 
equivalent ways and the presentation here is taken from Greenspan (1969), who, 
in turn, based his work in part on that of Crabtree, Kuchemann & Sowerby 
(1963). 

2.3. Problem sequence 

Substitution of the perturbation expansions into the governing equations and 
boundary conditions (1)-(3), (8)-(11) and (20)-(22) leads to a sequence of 
problems for the inviscid, adiabatic interior flow, the boundary-layer flow and 
their mutual interactions. The problem sequence is as follows. 

Problem (ia), the zeroth-order interior: 
V .Vo = 0,  Vpo = Toez, 1% = 0,  (23)-(25) 

with boundary condition 
Vo.f i=O on C. 

Problem (i b) ,  the first-order boundary layer: 

with boundary conditions 

V O + ~ , = O  on C, T,+po=T, on C. (3% (31) 

Problem (ic), the first-order interior: 

avo - -Vpl+TIC,, Pr- aT0 +TK = 0,  (32)-(34) v.v,=o, - -  a? a? 
with boundary conditions 

v , + Q ~ = o  on C, T,=O a t  T = O .  (3% (36) 

The zeroth-order boundary-layer equations yield the trivial results 
..# v, .fi = f j o  = 0, (37) 

which have been incorporated into the first-order problem. These results follow 
from the fact that the zeroth-order equations show that 4, .  fi and Po are constants 
and these constants must be zero if the boundary-layer corrections are to  decay 
to zero exponentially in 5. 
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The vorticity equation for the inviscid interior can be used to  show that the 
vertical component of vorticity is always zero to  all orders of approximation. To 
see this, take the curl of the momentum equation (12)) to obtain an equation for 
the vorticity w = curl V: 

(38) - = Ra-*V2w + VT x 6,. 
aw 
at 

If we neglect the viscous term, the vertical component of (38) is 

a - (Gz .a) = 0. 
at (39) 

Thus, we see that the vertical component of vorticity in the inviscid interior is 
constant for all time and, since the fluid starts from a state of rest there, that 
constant must be zero. Hence, the fluid will never contain any vertical vorticity 
in the inviscid interior (unless, of course, vertical vorticity is created in t'he 
boundary layer and diffused into the interior on the time scale of Rap:). This is 
true before, during and after the initial instant in which the boundary layers 
form. This result is crucial to the analysis that follows. 

3. Analysis 
The analysis of the heat-up from rest problem requires solving problems 

(ia)-(ic) for the interior flow, the boundary-layer correction, and their mutual 
interaction. The solution of these problems will be taken up now. 

3.1. Zeroth-order interior 

Problem (ia), which describes the zeroth-order interior flow, is given by (23)-(26). 
The curl of the momentum equation (24) yieldsVT, x Gs = 0, which shows that To 
depends only on the vertical spatial co-ordinate z. Of course, time enters into the 
description of the interior flow, but only as a parameter. Further analysis of the 
zeroth-order interior must be deferred until problem (i c) is considered. 

3.2. Pirst-order boundary layer 

The first-order boundary layer is described by problem (ib), which is given by 
(27)-(31). The scalar components of t,he momentum equation (28)) normal to the 
container and in the vertical direction, are 

where we have used the condition To .fi = 0 from (26) and (36). By combining 
these two scalar momentum equations with the energy equation, we derive 
a single fourth-order equation for the boundary-layer temperature, which may 
be written as 

(42) a4P0pt4 + [I  - (fi . 6c)2] Po = 0. 
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FIGURE 1. Cross-plane geometry and unit vectors. 

It is convenient to rescale the boundary-layer va.riable 6, as follows (assuming 
1 - fi . C, is not of the order of Ra-4, or smaller) : 

[ 1 - (fi . e,)2]a E. <* 3 
4 

Then the equation for the boundary-layer temperature becomes simply 

(43) 

The no-slip condition and the condition that Po must decay exponentially with 
c*, allow one to obtain the solution for Po 

Po = P,(r,; T )  exp (- c*)  cos c*. (45) 

r,is the position vector to some point on the container; pop,; 7) is the boundary- 
layer temperature on the container. 

As we have seen, the component of the zeroth-order boundary-layer velocity 
normal to the container wall must vanish, so that the entire zeroth-order 
boundary-layer velocity is tangential to the container. Hence, the vector 
momentum equation that describes the boundary-layer flow in a direction 
tangential to the container is, from (28), 

a 2 Q o / a y  = Po(Cc x ii) x ii. (46) 

The expression just found for the temperature can be substituted into this 
equation. Then, by integrating twice and using the fact that the boundary-layer 
velocity must decay exponentially across the boundary layer, the zeroth-order 
boundary-layer velocity is found to be 

Let V be the curve formed by intersecting C with a horizontal ‘cross-plane’, 
such that V bounds the cross-plane area A as shown in figure 1.  Define ii* to be 

47 F L M  71 
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the normalized component of the ~ont~ainer’s outward pointing unit normal 8, 
such that ii* lies in the cross-plane. Then fi and fi* are related by 

(48) 

Define GT to be a unit vector tangential to % in the cross-plane. Then 8, is 
related to ii by 

and (6*, C,, 8,) form an orthonormal triad on the container. Thus, in terms of a,, 
we may rewrite (47) as 

fi = lfi x 8,J fi* + (fi .C,)&,. 

6 ,  = 8, x fi/lC, x fil, (49) 

Q, = Po(r,; 7 )  (fi x 6,) exp ( - c*)  sing*. (50) 

Evaluating Q, x fi, and integrating the continuity equation (27) across the 
boundary layer, we obtain an expression for the first-order normal component 
of the boundary-layer velocity on the container. This boundary-layer ‘ suction ’ 
is given by 

Thus, the boundary-layer suction is solved to within a function that represents 
the boundary-layer correction to the temperature distribution on the container. 

From (50), we see that the lowest-order boundary-layer correction to the 
velocity has no component in the direction of hT. Thus the circulation of 0, 
around any curve parallel to V is zero and, by St,okes’s theorem, there is no 
vertical vorticity created in the boundary layer to lowest order. We can therefore 
conclude that, not only does the inviscid, adiabatic interior possess no vertical 
vorticity initially and during the heat-up time, but, even on the longer diffusion 
time scale, there will be no vertical vorticity in the interior up to and including 
order Ra-). 

3.3. First-order interior 

Problem (ic) describes the first-order interior flow; and i t  is given by (32)-(36). 
To proceed, we first decompose the interior velocity vector into a component in 
the cross-plane and a component normal to it. I n  other words, let 

v = v +  Wi?,, (52) 

where, by definition, v has no component in the z direction. If V, is the two- 
dimensional gradient operator in the cross-plane, then the vorticity vector 
w = V x V has a vertical component 6,. w = IV, x v I .  Thus, the magnitude of 
the cross-plane vorticity is equal to the z component of the total vorticity to 
every order. But, as seen from (39) and (50),  this component of the t)otal vorticity 
is zero for all times up to  and including the diffusion time, and for all orders up to 
and including Ra-i. Thus, we conclude that the cross-plane velocity is irrota- 
tional in the  cross-plane, up to a t  least order R d .  

The continuity equation states that the total velocity vector has no divergence 
to all orders. As a direct consequence of this, we may use (52) to write 

v, . v = - a wlaz. (53) 
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This can be interpreted as the continuity equation for a constant-density two- 
dimensional flow in the cross-plane, with a source term due to the vertical motion 
into the cross-plane. 

The zeroth-order interior has no flow in the vertical direction, as shown by (25). 
Thus, the zeroth-order cross-plane velocity has not only zero two-dimensional 
curl, but also zero two-dimensional divergence. It follows that the zeroth-order 
flow is a potential flow in the cross-plane. Furthermore, the normal component 
of the zeroth-order velocity vanishes on the container, as seen from (26). Hence, 
the zeroth-order flow in the cross plane is described by the Neumann problem for 
Laplace’s equation with a vanishing boundary condition. Thus, the cross-flow 
vanishes, and we conclude that the inviscid interior is motionless to zeroth order. 

Since the first-order velocity has a non-zero vertical component, the equation 
(53) for the first-order cross-flow becomes 

v, . vl = - aw,p. (54) 

We may integrate (54) over the cross-plane area A ,  and use the energy equation 
(34) to show that, like To, W, depends on only the vertical spatial co-ordinate (as 
well as time r, of course). The result of this integration is 

Green’s theorem in the plane may be used to convert the area integral into a 
line integral. Then, substituting for ii* in terms of ii and writing V, = V, - W,6,, 
we ,can rewrite (55) as 

Leibnitz’s rule for differentiating an integral can be used to show that the line 
integral on the left side of this equation is nothing more than the derivative of 
the cross-plane area A .  The argument of the line integral on the right is directly 
related to the boundary-layer suction through the boundary condition given 
by (30). We eliminate W, in favour of To by using (34), and substitute the ex- 
pression for the boundary-layer suction given by (51) into (56), to obtain, after 
converting the line integral in ( 5 6 )  to a surface integral over ET (that portion of 
the container surface E that lies above U), 

Using Stokes’s theorem to convert the surface integral t o  a line integral, and 
making use of the fact that the temperature is specified on the container, so that 

7 )  = T,-To on Z, (58) 

we can rewrite (57), after integration, as 

where f(7) is the function of integration. Since T, depends on spatial location 
47-2 
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andf(7) does not, it is obvious that f(7) is independent of T,. That is, f(7) is t,he 
same no matter what temperature boundary condition is imposed. Furthermore, 
if Tx remains zero for all time, then To must remain zero for all time, which leads 
to the conclusion thatf(7) is identically zero. Hence, the solution to (63) can be 
obtained by use of the integrating factor as 

where g(z)  is the function of integration. 

Let us define the ‘average’ value of any variable Q around %? to be 

Thus, the e-folding time 7H can be defined as 

so that (GO) may be rewritten as 

where we have determined g(z) such that To is initially zero, as required by (36). 
The solution for the first-order vertical velocity component in the interior is given 
in terms of the time derivative of this temperature by the energy equation (34). 
This velocity component can thus be written as 

Thus the interior temperature and vertical velocity depend on only the averaged 
container temperature (Tx). This result is similar to that obtained by Barcilon & 
Pedlosky (1967) for the interior motion of a stratified fluid in a differentially 
rotated right circular vertical cylinder. In  that case, the cylinder’s temperature 
was arbitrarily prescribed, and the top circular plate and side wall of the cylinder 
rotated a t  a constant angular velocity, while the lower circular plate had a 
slightly different angular velocity. Using the linear theory of rotating, stratified 
flows, they found that the steady interior motion was horizontal and depended 
on only (Tx). At a steady state, (64) shows the interior motion for flows driven 
exclusively by buoyancy from a state of rest must also be horizontal, although, 
as we shall see for our case of non-rotating, stratified flows, the interior motion 
does not depend on (T,) only. 

The non-dimensional e-folding time, or ‘heat-up’ time rH,  can be rewritten in 
dimensional form as 

where t ,  is the dimensional heat-up time, A the horizontal cross-sectional area 
of the container non-dimensionalized by L2, V the circumference of A non- 
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,.dimensionalized by L, L the height of the container, N the Brunt-Viiisalii 
frequency, Pr the Prandtl number, Ra the Rayleigh number. 

To complete the solution to the general heat-up problem, we must find the 
first-order interior flow in the cross-plane. As we have already seen, the fist-order 
cross-plane velocity is irrotational in the cross-plane (i.e. V, x v, = 0). Thus, we 
may derive the cross-plane velocity from a scalar potential #, by writing 
v1 = V2$,. Therefore, from (54), we obtain the Poisson equation for the cross- 
plane velocity potential #,, 

The boundary condition given by (35), when dotted with 6, can be rewritten by 
means of (48) and (52) as 

v; $, = - awllax. (66)  

Substituting for the boundary-layer suction from (51), and rewriting v, in terms 
of the velocity potential #,, gives the boundary condition for (66)  : 

where we have used (31) to express po(rz; 7 )  in terms of T, and To. Thus, we find 
that the flow in the cross-plane is equivalent to the flow of a two-dimensional, 
constant density, irrotational fluid, with a uniform source distribution provided 
by the vertical velocity. The boundary condition reflects the fact that fluid pene- 
trates the cross-plane circumference, because of changing cross-plane area and 
boundary-layer suction. 

This completes the lowest-order solution to the general heat-up problem. The 
temperature and vertical velocity are completely specified in terms of the 
‘average ’ value around %? of the container temperature. The cross-flow solution 
follows from the above Poisson equation and associated boundary condition, 
which, of course, will depend upon the particular container geometry and 
temperature boundary condition being considered. 

3.4. Remarks 
It is worth noting that, unlike the usual external forced-convection boundary- 
layer theory, the theory of buoyancy-driven contained fluids has an inherent 
coupling between the inviscid region and the associated internal boundary layers. 
In  other words, we cannot calculate the lowest-order interior motion) make 
a boundary-layer correction, then proceed to calculate the first-order interior, 
etc. Instead, each ‘interior boundary layer’ pair must be calculated simul- 
taneously. For example) the equation for the zeroth-order interior temperature 
(57) contains imbedded in it the zeroth-order boundary-layer temperature, 
which in turn is known only in terms of the interior temperature. This reflects 
the fact that the lowest-order inviscid flow is driven by the lowest-order boundary 
layer, a situation far different from the more familiar external forced-convection 
problem. 
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We can also write the energy equation for the next higher-order interior flow. 
It is 

We see that, for the final steady state, this becomes 

Pr 8TJar + W, = - V2To. (69) 

From (70) we can note the difference between a flow driven by a boundary 
temperature linear in z, and one driven by a nonlinear boundary temperature. 
In the first case, the vertical motion ceases when thermodynamic equilibrium is 
aohieved, and the boundary layers die out in the heat-up time. I n  the second case, 
the final steady temperature profile is incompatible with a state of static equi- 
librium, and, although the lowest-order vertical motion ceases in the heat-up 
time, the next higher-order verticity component W, apparently does not. 

The boundary-layer approximation employed in this development may 
require modification in cases where sharp corners exist. Further, the analysis of 
the first-order interior motion tacitly assumes the continuity of the derivative 
of the cross-sectional area A(z) .  Discontinuities in dA/dz (such as occur in the 
annular region between two spheres) may give rise to internal shear layers. Thus, 
itt is t o  be understood that, in referring to arbitrarily-shaped closed containers 
here, we are excluding containers with sharp corners, or discontinuities in cross- 
sectional area that give rise to internal shear layers. These problems require 
further study. 

The role of boundary layers on horizontal surfaces (for which 6s. fi = 1) has also 
been ignored in this discussion of the general problem of heat-up from rest. As 
the analogy with the linear theory of rotating fluids suggests, horizontal boundary 
layers with thickness of the order of Ra-6 would be expected to arise on horizontal 
surfaces connecting non-horizontal surfaces to ensure global mass conservation 
by transporting mass from one Ra-t buoyancy-driven boundary layer to another. 
Also, horizontal boundary layers with thickness of order Ra-Q would be expected 
to occur, to smooth out any abrupt changes or discontinuities in temperature. 
Analysis shows this is indeed the case. A detailed description of the results for 
these horizontal boundary layers a t  this time, however, would take us too far 
astray. 

The present theory also assumes the nonlinear convection terms, of order 6, 

are negligible. More precisely, in the interior terms of order E have been deleted. 
This t'hen implies the restriction E < Ra-a. If, however, T, =k (T,), then a more 
stringent condition applies. I n  this case, buoyancy-driven boundary layers 
occupying an area of order persist in time with a circumferential vorticity 
(made dimensionless with respect to E N )  of order Rat. Owing to nonlinear vortex 
twisting, this gives rise to a vertical vorticity of order E Rag. Provided these 
boundary layers persist over a diffusion time Ra&, this vertical vorticity will 
diffuse into the interior, giving rise to a vertical vorticity there of order c Ral. 
This nonlinear contribution to the interior vorticity has been neglected in the 
present development. Such an approximation is valid, provided c Ral < Ru-4. 
Thus, in the case Tx =+ (T,), the more stringent condition c < Ru-8 must prevail, 
if the results of this analysis are to be valid. 
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4. Some examples 
The solution to the general problem of heat-up from a state of rest of a 

Boussinesq fluid in an arbitrarily-shaped closed container is complete, as far as 
the lowest-order temperature and vertical velocity are concerned. Given a parti- 
cular container geometry and temperature boundary condition, one may, from 
(63) and (64), immediately write down the solutions for temperature and vertical 
velocity, in terms of the heat-up time rH and the ‘average ’ value of the boundary 
temperature (Tx). 

From (63), we see that the inviscid interior temperature varies onlywith vertical 
position within the container, and that this interior temperature approaches the 
average value of the container temperature asymptotically in time. Furthermore, 
we see from (64) that the vertical component of velocity in the interior approaches 
zero asymptotically in time. Thus, if there is any motion at all in the final steady 
state, that motion must be purely horizontal. This tendency toward horizontal 
flow is a characteristic of all stratified fluids, and is often referred to as ‘plugging’ 
or ‘plugged’ flow. This phenomenon may be predicted by simply inspecting the 
linearized energy equation (3). This equation shows that W is identically zero in 
the inviscid interior when the fluid is a t  steady state. 

The problem for the irrotational flow in the cross-plane, as defined by the 
elliptic Poisson equation (66) with the boundary condition given by (68), is a well- 
posed problem, whose solution for any container geometry and temperature 
perturbation is straightforward. Furthermore, there are special situations for 
which closed-form analytic solutions can be found. We shall now attempt to 
reveal the important physical notions associated with various container geo- 
metries and boundary temperatures, by treating several of these analytical 
examples. 

4.1. Right vertical cylinders 

We first consider the special class of containers consisting of right vertical 
cylinders of arbitrary cross-section. For this class of containers, we have the two 
conditions 

for the side walls. In  this case, (61) yields the result 

ii .gz = 0, i i x c ,  = 1, 

(T,) = %-I$ T,ds, 
w 

which we recognize as the conventional average value of Tz around %. Further- 
more, the heat-up time is a constant given by (62): 

= 4 2  Pr A/%. (73) 

Thus, the temperature and vertical velocity solutions for all right vertical 
cylinders are given by (63) and (64): 
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where (Tx) is the conventional average value of the boundary temperature around 
the container perimeter V, and rH is a constant that depends on the Prandtl 
number and the ratio of the container's cross-sectional area to its perimeter. 

The cross-flow problem for all right vertical cylinders becomes 

(76) 
i ua 

= ~ ~ & ( T , ) e x P ( - T / 7 H ) j  

with boundary condition 
1 

an 42 - - - fi . v x [(T, -(T!) +(T,) exp ( - T / T ~ ) )  c,] on V. (77) 

From this problem for flow in the cross-plane, we deduce the important result 
that the final steady-state motion in the cross-plane is always zero through first 
order, unless the temperature boundary condition varies around the cross-plane 
perimeter V. In  other words, as 7+co we have 

_ -  a41 

v; $1 -+ 0, (78) 

(79) with 

This equation describes a non-zero motion only when T, differs from its average 
value around V. Thus, a steady non-zero cross-flow results only if the prescribed 
contn,iner temperature perturbation varies around the perimeter of the container. 

1 - '"-+---fi.Vx [(T,-(T,))C,] on %'. 
an ,,I2 

4.2. Right circular vertical cylinders 

If we speciali e the cross-section of the right vertical cylinder of height L to be 
a circle of radius R, then the non-dimensional cross-plane area A equals n(R/L)2, 
and t,he circumference V equals 2n(R/L). Hence, t'he heat-up time, as given by 
(731, is 

Now assume that the given boundary temperature Tx depends on only t)he 
vertical spatial co-ordinate z (i.e. T, = T,(z)). We refer to this as a z-dependent 
boundary condition, in contrast to one which depends upon both z and some 
azimuthal co-ordinate. Since Tx does not vary around V, it is obvious that the 
average value of Tz around $? is equal to T, itself. Of course, this can be seen 
directly from (72); and i t  can be expressed as (Tx) = Tx. This result holds for any 
z-dependent boundary condition, regardless of container geometry. Thus, the 
temperature and vertical velocity solutions may be written down directly from 
(74) and (75) as 

(81) TO = TX[l -exp ( - 7 / 7 H ) l ,  
T 

L 

' -  R 
w - - 2/2 - p, eXp ( - 7 / 7 H ) ,  (82) 

where 7 H  is given by (80). The Poisson problem for the velocity potential is 
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Hot 

Cold 

Hot 

' Cold 

- 
FIGURE 2. Four-celled flow produced by linear boundary temperature. 

T, = z - 4. Cross-section taken through centre-line. 

with boundary condition 

1 dTz R %=-- e x p ( - ~ / 7 ~ )  on r = - L' 
dr 4 2  dz 

where we have reasoned that q51 =k #,(S) by symmetry, and reduced (76) and (77) 
to this form. The solution to this problem is found, by a straightforward integra- 
tion and application of the boundary condition, to be 

Thus, we obtain the following expressions for the cross-plane velocity components 
in cylindrical polar co-ordinates: 

(86)l  (87) 
1 L dT, 

' - 4 2 R  dz 
u - - - r - e~p( -7 /7~) ,  vl = 0. 

Since there is no flow in the azimuthal direction, it follows that the streamlines 
are along lines of constant 0. Hence, we see that the flow in the cross-plane is 
purely radial, and that the speed of this cross-plane flow increases with increasing 
distance from the centre-line of symmetry of the circular cylinder. 

For the purpose of illustration, let us consider a boundary temperature that 
varies linearly in z ,  Tz = z - $. Here, as sketched qualitatively in figure 2, the 
fluid rises near the heated part of the boundary (z  > 4). Hence, fluid is always 
being entrained from the interior into the buoyancy-driven viscous boundary 
layers, and they grow as shown. This horizontal entrainment causes a weak 
vertical motion in the interior as a consequence of mass conservation. In  the upper 
half of the cylinder, fluid particles in the interior descend, while they rise in the 
lower half of the cylinder. As the interior is inviscid and adiabatic, the tempera- 
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Cold Hot 

Cold 

(4 

’ Hot 

FIGURE 3. Qualitative sketch of flow produced by azimuthally-varying boundary tempera- 
ture. (a) Top view of interior streamlines. ( b )  Cross-section taken through centre-line. 
T, = f (z)cos28.  

ture of a fluid particle there remains constant. Particles in the upper (lower) half 
of the cylinder continue to fall (rise) until they reach a level where their tempera- 
ture equals the heated (cooled) wall temperature. At this point the motion ceases, 
the boundary layers decay, and the fluid is heated. This particular geometry 
and boundary condition was studied by Sakurai & Matsuda (1972) following a 
different method; and our solution agrees exactly with theirs. 

Let us now assume that the container temperature is known to be 

Tx = f(z) cos (a@, (88) 

where a must be an integer so that Tx is single-valued. Then its average value, as 
given by (72), is zero. From (74) and (75) we conclude that both To and W, vanish. 
This result illustrates what is apparent from inspecting (74) and (75): namely, 
that the interior heat-up process is a response to the ‘average’ value of the 
boundary temperature, and when that average is zero the fluid does not heat up. 
However, this does not mean there is no cross-flow. We can see this by inspecting 
the appropriate Poisson equation for this example, which reduces to 
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FIGURE 4. Azimuthally-varying boundary temperature producing four-cell flow. Top view 
of interior streamlines. Tz = f(z)cos20. 

with boundary condition 

The solution to this problem can easily be obtained by separation of variables as 

From this the velocity components can be found by differentiation. The stream- 
lines are given by 

r = const/(sin at3)lla. 

Then, e.g. when a = 1, f ( 0 )  = 0 and f ' ( z )  is positive, we have the qualitative 
temperature profile and flow pattern shown in figure 3. We see that in this case 
a fluid particle rises in the boundary layer near the hot wall, crosses the top of 
the container in a horizontal boundary layer which arises to conserve mass 
globally, descends in the boundary layer near the cold wall until it reaches its 
original level, then crosses the interior of the container from the cold wall to the 
hot wall in a straight-line motion often referred to as 'plugging '. This preference 
for purely horizontal motion in the interior (plugging) is often observed in steady 
natural-convection problems. The cross-flow pattern is shown in figure 4for a = 2 
and f ' ( 2 )  positive. As the parameter a increases through the integers, the flow will 
continue to divide into 2a cells, in order for fluid to enter the interior at  a cold wall 
and leave at  a hot one. Notice that, iff ' ( 2 )  is zero (i.e. the boundary temperature 
varies only azimuthally and not with z ) ,  then not only is there no vertical motion, 
but the cross-flow is also zero, as seen from (91). Although the form of the 
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azimuthally-varying boundary condition used in this example (T, = f(z) cos a0) 
appears a t  first glance to be rather restrictive, it  is actually quite general, in that 
any arbitrary boundary condition can be Fourier synthesized by an infinite series 
composed of terms of this kind. 

It is worth noting that the general solution to the cross-flow problem can be 
written in terms of a Neumann function, which depends on only the geometry of 
the boundary curve %'. This solution is 

where N is the Neumann function. The singular Neumann function must be 
determined from the problem 

aN - o on V, 
aw 
a2 an* 

V a N = - L N ,  - - 

1 
27I 

N - --log Ir-rl as r+<. 

Here r is the position vector as usual, and r is the position vector at  a field point. 
Thus, in principle, the solution for any geometry and any temperature per- 

turbation is given by ( 9 3 )  since on % is known from (72) and the Neumann 
function can be found for a particular container geometry from the above 
problem. Of course, the Neumann function can be found analytically in very few 
cases and our discussion of simplified geometries and boundary conditions will 
continue. However, this general solution to the cross-flow problem may be useful 
in determining numerical solutions to more complicated problems and certainly 
emphasizes the elliptic behaviour of the cross-flow. 

4.3 .  Right elliptical vertical cylinders 

Let the cross-section of the right vertical cylinder of height L now be an ellipse 
with semi-major axis a and semi-minor axis b .  The non-dimensional cross-plane 
area A and its circumference V are 

where E is the complete elliptic integral of the second kind. The heat-up time is 

7T I1 
TH = - Pr 

242 E( [ 1 - b2/a2]*) ' 

With this expression, the lowest-order temperature and vertical velocity can be 
found from (74) and (75). If we limit our attention to x-dependent boundary 
conditions, the problem for the cross-flow reduces to 
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FIGURE 5. Cross-flow streamlines for right elliptical cylinder. 
(a) ?? < 277. ( b )  v = 277. (c) c2? > 277. 

with boundary condition 

749 

Here U and V are elliptical co-ordinates with U = U, = tanh-l(b/a) on the 
container. The solution of this equation is 

A (cosh2 U - sin2 V ) ]  , (103) 
exp(-T/TH) - I--  U + -  %? dT, 

42A dz K( E) 4n coshU,sinhU, 

where the condition that the cross-plane flow must be everywhere irrotational 
has been invoked, to render the solution unique. The velocity components follow 
upon differentiation. The equation for the streamlines may be obtained as 

e2~+2A-(4A2+ (U-S+I~-* const. 
(104) 

(105) 

=- 
tan V ' e 2 U + 2 B + ( 4 A 2 +  I)+ 1 

where B = (27r/V- 1) cosh U, sinh U,. 
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FIUURE 6. Ellipsoid of revolution. 

Notice that we have the three possibilities 

B > o for V < 27r, B = o for w = 27r, B < o for %? > 277. 

Figure 5 shows the cross-flow streamline patterns for each of these three cases. 
When %? is less than 277, the streamlines tend to run parallel to the minor axis. 
When %? equals 277, the streamlines are straight lines emanating outward from 
the cylinder's centre-line. When %? is greater than 277, the streamlines tend to run 
parallel to the major axis of the ellipse. Inspection of (99) shows that %? equals 27r 
when E ( [ 1 -  b2/a2]6) = na/SL. Thus, the three separate cases arise because of 
a geometry effect, which compares the size of the elliptical cross-section with the 
height of the cylinder. 

4.4. Ellipsoid of revolution 

We now consider the container as an ellipsoid of revolution of height 1 and radius 
a, as shown in figure 6. We shall introduce cylindrical polar co-ordinates, and 
take the radial co-ordinate T to be rs on the container. The non-dimensional 
cross-plane area and circumference are given by 

A = 7rr& %' = 277rs, where rc = a/L( 1 - 4z2)*. (106)-( 108) 

The heat-up time, as given by (62)) is 

Pr a (1 - 427% 
T H  =-- 

4 2  L [ 1 - 4 ( 1 - 4( a/L)2)  z2]1 
(109) 

We see, in contrast to the cylindrical case, that the ellipsoidal heat-up time is 
not constant, but varies with z. 
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If we consider the special case of the z-dependent boundary condition, then the 
Poisson equation for flow in the cross-plane is 

with boundary condition 

dq41 7CPrdTC _ -  _--- e x p ( - ~ / 7 ~ )  on r = r C .  
dr 2 rH dz 

The solution of this problem is 

r, v1 = 0. 
Pr d Tz exp ( - 7/7H) Ul = -- 
2 dz ( rH 

The heat-up time for a right circular cylinder of height L and radius R is given 
by (80). Thus, if we use (109) to calculate the heat-up time for an ellipsoid of 
revolution of height L and radius R, we can form the comparison 

which is less than unity, except a t  x = 0. Thus, except a t  z = 0, a right circular 
cylinder of radius R and length L takes longer to heat-up than the ellipsoid of 
revolution it circumscribes. 

4.5. Remarks 

The general heat-up solution will combine all of the features illustrated in the 
preceding examples. When an arbitrarily-shaped closed container is perturbed 
by a general impulsive boundary temperature, a boundary layer will be formed 
almost instantaneously. This boundary layer will entrain fluid from the inviscid 
interior, establishing boundary-layer suction, and consequently (because of mass 
conservation) vertical motion in the interior. Furthermore, the boundary-layer 
averages azimuthal variations in the container temperature, such that i t  presents 
an effective isothermal boundary to each horizontal layer of interior fluid. How- 
ever, each horizontal layer of fluid in the interior is initially isothermal, since the 
fluid originally is in a stratified state of static equilibrium. There is no mechanism 
for heat transfer in the interior, other than convection. Thus, each horizontal 
layer of isothermal fluid will remain isothermal as it is convected to its new equi- 
librium position at a velocity whose vertical component is constant across each 
horizontal layer. The final heated state is approached asymptotically in time; 
and the e-folding time for this heat-up process will vary with vertical location 
within the container. Finally, the interior fluid layer will (asymptotically) reach 
a level where its temperature equals the average container temperature, and 
the fluid will have returned to thermal equilibrium with the container. ‘Net’ 
boundary-layer entrainment will cease, as will vertical motion in the interior, 
and the fluid will be ‘heated’. Horizontal motion (plugging) will persist, with 
fluid entering the interior a t  a ‘cold’ wall, and leaving the interior a t  a ‘hot’ one, 
in such a way that the net mass flux into the interior is zero. 
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5. Concluding remarks 
The linearized solution to the problem of heat-up from rest has been found. 

That is, given that a Newtonian, weakly-stratified fluid with constant fluid 
properties is initially at rest in a completely filled closed container of general 
shape (ignoring containers with sharp corners and discontinuities in cross- 
sectional area, which give rise to internal shear layers), and given that the tem- 
perature of this container is impulsively changed by a ‘very small’ amount, then 
the response of the fluid to this temperature perturbation is known. The interior 
temperature and vertical velocity solutions are simply written in terms of the 
circumferential ‘average ’ value of the temperature perturbation. The flow in the 
cross-plane must be determined by solving a Poisson equation for the particular 
temperature perturbation and container geometry being considered. This 
problem is well posed, and numerical solution is straightforward. 

It was found, from the analysis, that the inviscid interior region responds to 
a special ‘average ’ value of the temperature perturbation on the container, and 
that the effect of the boundary layer is to smear out, or average, any circum- 
ferential variation in this perturbation, so that the interior region, in effect, 
responds to an isothermal cross-plane boundary. 

The heat-up mechanism is convective in nature. Conduction and viscosity are 
important only in thin boundary layers of thickness of the order of Ra-i that lie 
near the container walls. These boundary layers become fully developed within 
a few periods of the Brunt-Vaisala frequency, then change very slowly during 
heat-up. The viscous boundary layer requires that a small mass flux be established 
in the interior region normal to the container side walls, which in turn requires 
a small vertical mass flow in the interior to preserve continuity. This boundary- 
layer ‘suction’ provides the basic heat-up mechanism. By this process, each 
interior fluid particle convects its ‘temperature ’ (more precisely, its static 
enthalpy) from its original equilibrium location to some new equilibrium location 
within the container, where this temperature must necessarily equal the corre- 
sponding boundary temperature. Thus, the fluid is heated, i.e. the interior 
temperature equals the ‘boundary ’ temperature (which is a boundary-layer- 
averaged container temperature) and the vertical motion ceases. Horizont,al 
motion will persist if the container temperature has azimuthal variations. This is 
the ‘plugging’ effect that is common in stratified flows. 

Several analytical solutions to the Poisson equation for flow in the cross-plane 
were found, to illustrate the basic heat-up process, and the alterations to this 
process that various combinations of the temperature perturbation and container 
geometry cause. This first calculation for the circular cylinder with a z-dependent 
boundary condition displays all of the physical ideas associated with the 
general heat-up problem, and at the same time affords great mathematical 
simplification. 

The circular cylinder with an azimuthally-varying boundary condition demon- 
strates explicitly the concept that the fluid responds to the ‘average’ tempera- 
ture, by showing that the interior temperature does not change for a sinusoidal 
azimuthal perturbation, since the average value of this perturbation is zero. 
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Furthermore, we see that the cross-flow is not zero for this case; instead, it is the 
familiar ‘plugged ’ flow found in many stratified-fluid problems. 

The elliptical cylinder exhibits an odd ‘ change of preference for flow direction ’ 
dictated by a parameter which compares the (normalized) cross-sectional area 
of the cylinder with its (normalized) perimeter. The calculation for the ellipsoid 
primarily demonstrates the fact that  the heat-up time varies with vertical 
position for non-cylindrical containers. 

The general container was found to approach its h a 1  steady state asymptoti- 
cally in time, thus the ‘ heat-up ’ time was defined to be the e-folding time, whose 
value was established to be proportional to Rut. Therefore, referring to  (62), the 
insulating air gap in a pane of thermal glass heats up in approximately 2s, a 
2 f t  radius LOX fuel tank in a spacecraft on the pad heats up in 2 h, a one hundred 
foot diameter LNG storage tank heats up in about 2 days, and the mantle of the 
earth heats up in from 108 to lo9 years. The calculation for the earth’s mantle is 
based on data that are sketchy at best. Furthermore, the Prandtl number in the 
core is very large, and consequently the viscous dissipation term might not be 
negligible, as was assumed in our theory. Nonetheless, our calculation shows the 
possibility that the motion in the earth’s mantle may not have reached steady 
state. 

I n  our work we have assumed that the temperature on the container changes 
impulsively in time from a function that varies with location on the container 
only (the basic stratification) to some new function that also depends on only 
position, as seen from (9). I n  other words, the boundary temperature is assumed 
t o  be independent of time, except during that initial instant in which it is impul- 
sively perturbed. Nevertheless, if the boundary temperature varies slowly in 
time (on the heat-up time scale of order Rai), then the solution to this more 
general problem may be found from our theory, by treating this time-varying 
boundary condition in terms of a superpositional integral. This more general 
solution is possible since the governing equations are linear (hence superposition 
is valid), and since a boundary condition that varies only on the slow heat-up 
time scale will drive a flow that is adequately described in terms of this slow time 
variation. Of course, boundary conditions that vary on a shorter time scale (of 
the order of the Brunt-Vaisala frequency) cannot be treated by this method, and 
further investigation is necessary in this case. 

The authors gratefully acknowledge the helpful comments of the referees, 
especially with regard to the arguments concerning the limitations on the 
parameter 8. 

R E F E R E N C E S  

BARCILON, V. & PEDLOSKY, J. 1967 Linear theory of rotating stratified fluid motions. 
J .  Fluid Mech. 29, 1. 

CRABTREE,L. F., KUCHEMANN, D. & SOWERBY, L. 1963 In Laminar Boundary Layers (ed. 
L. Rosenhead) ch. 8 )  Oxford University Press. 

DOTY, R.T. 1973 Linearized buoyant motion in a closed container. P1i.D. thesis, 
University of Oklahoma. 

DOTY, R. T. & JISCHKE, M. C. 1974 Linearized buoyant motion due to impulsively heated 
vertical plate(s). Int. J .  Heat Mass Transfer, 16, 1716. 

48 F L M  71 



754 M .  C. Jischlce and R. T .  Doty 

GREENSPAN, H'. P. 

GREENSPAN, H. P. 1969 The Theory of Rotating Flzhids. Cambridge University Press. 
GREENSPAN, H. P. & HOWARD, L. N. 1963 On a time-dependent motion of rotating fluid. 

OSTRACH, S. 1972 Advances in Heal Transfer (ed. J. P. Hartnett and T. F. Irvine), vol. 8. 

SABC'RAI, T. & MATSUDA, T. 1972 A temperature adjustment process in a Boussinesq 

SIEGBIANN, W. L. 1971 The spin-down of rotating stratified fluids. J. Eluid Mech. 47,689. 
VERONIS, G. 1970 The analogy between rotating and stratified fluids. Ann. Rev. Flitid 

Mech. 2 ,  37. 

1965 On the general theory of contained rotating fluid motions. 
J .  Fluid illech. 22, 449. 

J.  Fluid Mech. 17, 385. 

Academic. 

fluid via a buoyancy-induced meridional circulation. J .  Flt~icl Mech. 54, 419. 




